Crystal and Molecular Structure of $\left[\mathrm{Pd}_{3}\left\{\mathrm{C}_{3} \mathrm{Ph}\left(\mathrm{p}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}\right\}_{2}(\mathrm{acac})_{2}\right]$, derived from a Tri-arylcyclopropenium Salt and a Palladium(0) Complex \dagger

By Pamela M. Bailey, Alan Keasey, and Peter M. Maitlis,* Department of Chemistry, The University, Sheffield S3 7HF

The crystal and molecular structure of $\left[\mathrm{Pd}_{3}\left\{\mathrm{C}_{3} \mathrm{Ph}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}\right\}_{2}(\mathrm{acac})_{2}\right]$ (2) \{obtained from $\left[\mathrm{Pd}_{2}(\mathrm{PhCH}\right.$: $\left.\mathrm{CHCOCH}: \mathrm{CHPh})_{3}\left(\mathrm{CHCl}_{3}\right)\right]$ and $\left[\mathrm{C}_{3} \mathrm{Ph}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}\right] \mathrm{Br}$ followed by reaction of the product with $\left.\mathrm{Tl}(\mathrm{acac})\right\}$ has been determined. Crystals are monoclinic, space group $C 2 / c\left(C_{2 h}^{6}\right.$, No. 15) with $a=14.99(1), b=21.88(2), c=$ 18.98(2) $\AA, \beta=90.5(1)^{\circ}, U=6227 \AA^{3}$, and $Z=4 ; R=0.060$ for 2259 independent reflections. The compound is composed predominantly (67%) of enantiomers of one isomer which arises from the addition of the $C_{3} R^{1} R^{2}{ }_{2}$ moiety $\left(\mathrm{R}^{1}=\right.$ phenyl, $\left.\mathrm{R}^{2}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$ to $\mathrm{Pd}(1)$ by ring-opening of the $\mathrm{CR}^{2}-\mathrm{CR}^{2}$ bond $\left[\mathrm{R}^{2} \mathrm{C}(1)-\mathrm{C}(2) \mathrm{R}^{1}=\right.$ $\left.1.370(17): R^{1} C(2)-C(3) R^{2}=1.443(19) ; R^{2} C(1) \cdots C(3) R^{2}=2.116(17) A\right] . \quad \mathrm{Pd}(1)$ is also 0.0^{\prime}-bonded to the acac (pentanedionato) ligand. Two such units are linked by $\mathrm{Pd}(2)$ such that the three Pd atoms form a triangular framework $\left[\operatorname{Pd}(1)-\operatorname{Pd}(2)=2.662(2) \AA: \operatorname{Pd}(1)-\operatorname{Pd}\left(1^{\prime}\right)=4.769(2) \AA\right.$: $\left.\operatorname{Pd}(1)-\operatorname{Pd}(2)-\operatorname{Pd}\left(1^{\prime}\right)=127^{\circ}\right]$, the two halves of the molecule being related by a two-fold axis of symmetry through $\mathrm{Pd}(2)$. The structure may be viewed either as having the acyclic $\mathrm{C}_{3} \mathrm{R}^{1} \mathrm{R}^{2}$ 关ligands bridging $\operatorname{Pd}(1)-\operatorname{Pd}(2)$ [and $\operatorname{Pd}(2)-\operatorname{Pd}\left(1^{\prime}\right)$] or as two palladiacyclobutenyl ligands $\left[>\operatorname{Pd}(1) \mathrm{C}_{3} \mathrm{R}^{1} \mathrm{R}^{2}{ }_{2}\right] \pi^{4}$-bonded to $\mathrm{Pd}(2)$. The presence of other isomers of (2) (33\%) is deduced from the electron densities in the p-positions of the C_{3}-aryl substituents; these isomers arise from cleavage of $C R^{1-} C R^{2}$ bonds in the original $C_{3} R^{1} R^{2}{ }_{2}$ salt.

The following paper describes the chemistry of a novel series of palladium and platinum complexes (1) derived
crystal, and such that the diffraction peaks did not appear to interfere.

$$
\begin{aligned}
& {\left[\mathrm{M}_{2}(\mathrm{dba})_{3}(\text { solvent })\right]+\left[\mathrm{C}_{3} \mathrm{R}^{1} \mathrm{R}^{2}{ }_{2}\right]^{+} \mathrm{Br}^{-} \rightarrow\left[\mathrm{M}_{3}\left(\mathrm{C}_{3} \mathrm{R}^{1} \mathrm{R}^{2}{ }_{2}\right)_{2} \mathrm{Br}_{2}\right]} \\
& \text { (} \mathrm{dba}=\mathrm{PhCH}: \text { СНСОСН:CHPh) } \\
& \text { (l) } \mathrm{M}=\mathrm{Pd}, \mathrm{Pt} ; \quad \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}
\end{aligned}
$$

Crystal Data.- $\mathrm{C}_{56} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{Pd}_{3}\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}\right.$ of crystallisation $]$, $M=1246.4 ;$ monoclinic, $a=14.99(1), b=21.88(2), c=$ 18.98(2) $\AA, \beta=90.5(1)^{\circ}, U=6227 \AA^{3}, Z=4$; space group $C 2 / c\left(C_{2 h}^{6}\right.$, No. 15) from systematic absences; ρ (calc.) $=1.329, \mathrm{p}$ (obs.) $=1.38 \mathrm{~g} \mathrm{~cm}^{-3} ; \quad$ Mo $-K_{\alpha}$ radiation, $\lambda=$ $0.71069 \AA$. The cell constants were determined from leastsquares fit to the setting angles of 104 reflections centred manually.

Three-dimensional X-ray data ($6.5^{\circ}<20<50^{\circ}$) were collected with the crystal mounted along the b-axis using Mo- K_{α} radiation (graphite monochromator) and a Stoe STADI-2 diffractometer by the moving-crystal stationarycounter method. Variable-width scans were measured with a background count at each extremity of the scan. 2259 Independent reflections were collected with $I_{\text {obs. }} \geqslant 3 \sigma\left(I_{\text {obs. }}\right)$ and the structure was solved using Patterson and Fourier methods. Lorentz and polarisation corrections were applied, no allowance being made for extinction or absorption since $\mu=8.92 \mathrm{~cm}^{-1}$. The central palladium atom lies on the

\dagger No reprints available.

${ }^{1}$ A. Keasey and P. M. Maitlis, J.C.S. Dalton, following paper.
${ }^{2}$ A. Keasey, P. M. Bailey, and P. M. Maitlis, J.C.S. Chem.
Comm., 1977, 178.
crystallographic C_{2} axis, so that only half the molecule is unique. Block-diagonal least-squares refinement has finally reduced R to 0.060 , with anisotropic temperature factors for all non-hydrogen atoms which do not show disordering (those atoms which are disordered have been left as isotropic). Individual atom refinement was allowed initially, then the phenyl rings were treated as groups of fixed geometry, and finally the entire $p-\left(-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{C}-\right)$ units were treated as fixed geometry groups (using the O-phenyl and C-phenyl distances obtained from the individual atom refinement) as was the pentanedionato-ligand. This gave the structure shown for compound (2) (Figure 1).

At a fairly advanced stage of the refinement ($R=0.076$) a difference-Fourier synthesis showed some areas of small electron density. One of these was found to be in the paraposition of the phenyl ring (B) attached to the central carbon $[C(2)]$ of the C_{3} ligand. This suggested that the two methoxy-groups present on each $\left[\mathrm{C}_{3} \mathrm{Ph}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}\right]$ ligand were to some extent disordered over the parapositions of all three aryl substituents.

The populations of the three p-methoxy-oxygens [O(A), $\mathrm{O}(\mathrm{B}), \mathrm{O}(\mathrm{C})]$ were manually adjusted using the criterion that the total electron density should correspond to two oxygen atoms and that all should have similar isotropic temperature factors. Each of the two methoxy-carbons [$\mathrm{Me}(\mathrm{A}), \mathrm{Me}(\mathrm{C})]$ on the two end rings (A, C) was given the same population factor as the oxygens $[O(A), O(C)]$ to which it is attached. Although this treatment is only an approximation (since a different type of disorder could also be associated with these atoms), it was found that it gave sensible isotropic temperature factors for $\mathrm{Me}(\mathrm{A})$ and $\mathrm{Me}(\mathrm{C})$ though they were higher than the isotropic temperature factors of $O(A)$ and $O(C)$ respectively. The relative populations of $\mathrm{O}(\mathrm{A}), \mathrm{O}(\mathrm{B})$, and $\mathrm{O}(\mathrm{C})$ were found to be $0.97: 0.33: 0.70$. No localised region of electron density could be found for the central methoxycarbon $[\mathrm{Me}(\mathrm{B})]$ but this is not surprising since only a very small amount of electron density is involved and since this methyl could also be further disordered.

Although the atoms in the groups were assigned anisotropic thermal parameters, the presence of disorder in these sites means that these anisotropic values reflect to some extent the disorder associated with the atoms common to both phenyl and p-methoxyphenyl substituents as well as the thermal vibration.

The other area of electron density on the differenceFourier synthesis was remote ($>3.8 \AA$) from the atoms of the complex and could be resolved into six peaks. They were initially introduced into the structure-factor calculation as full carbon atoms but their populations had to be manually reduced to 0.4 so as to give reasonable isotropic temperature factors after refinement. A further differenceFourier synthesis at this stage showed that some electron density in this part of the cell was still unaccounted for but since the density was remote and clearly reflected the presence of solvent of crystallisation further computation was not felt to be justified. In view of the method of preparation of the crystals of (2) the solvent of crystallisation is probably severely disordered diethyl ether, the disordering possibly being due to the methoxy-disorder discussed above.

Atomic scattering factors were taken from reference 3. Programs used were part of the Sheffield X-ray system and calculations were performed on the Sheffield University ICL 1906 S computer. Atomic co-ordinates are given in Table

* See Notice to Authors No. 7, J.C.S. Dalton, 1977, Index issue, for details of the Scheme.

1, selected interatomic distances and angles in Table 2, and least-squares planes in Table 3. Tables of thermal parameters and observed and calculated structure factors are

Table 1
Atomic co-ordinates $\times 10^{4}$ [except $\times 10^{5}$ for $\operatorname{Pd}(1)$ and Pd(2)]

Atom	X	Y	Z
$\mathrm{Pd}(1)$	483(8)	4 668(6)	12 447(6)
$\mathrm{Pd}(2)$	0 (0)	10 076(8)	25000 (0)
C(1)	126(6)	1 379(4)	1449 (7)
C (2)	997(7)	$1379(5)$	$1675(9)$
C(3)	$1059(7)$	738(6)	1847 (8)
$\mathrm{C}(\mathrm{Al})$	-531(5)	$1874(3)$	$1314(4)$
C(A2)	-371(5)	$2462(4)$	$1571(4)$
$\mathrm{C}(\mathrm{A} 3)$	-988(5)	2 927(3)	$1444(4)$
C (A4)	-1 766(5)	$2804(3)$	$1059(4)$
$\mathrm{C}(\mathrm{A} 5)$	-1926(5)	2 217(4)	802(4)
C(A6)	- $1308(5)$	$1751(3)$	929(4)
O (A)	-2359(6)	3251 (4)	937(7)
$\mathrm{Me}(\mathrm{A})$	-2 290(16)	$3832(11)$	$1288(12)$
C (B1)	1 657(5)	1863 (4)	1673 (6)
C (B2)	1772 (6)	2 220(5)	$1071(5)$
$\mathrm{C}(\mathrm{B} 3)$	2 407(7)	2 686(4)	1070 (5)
C(B4)	2 928(5)	2 795(4)	1 670(6)
C (B5)	$2813(6)$	$2438(5)$	2 271(5)
C(B6)	2 177(7)	1972 (4)	2 273(5)
O (B)	3 538(7)	3 243(5)	1 668(9)
C(C1)	$1843(5)$	399(4)	$2127(5)$
C(C2)	2700 (6)	549(4)	$1901(5)$
C(C3)	3 437(5)	230(4)	$2164(5)$
C(C4)	3 318(5)	-239(4)	$2653(5)$
C(C5)	2462 (6)	-389(4)	2 879(5)
C(C6)	$1724(5)$	-70(4)	2 616(5)
$\mathrm{O}(\mathrm{C})$	4026 (7)	-545(6)	2906 (8)
Me (C)	3 914(23)	-952(17)	3 410(18)
$\mathrm{O}(1)$	338(5)	-465(4)	$1130(5)$
$\mathrm{O}(2)$	- $1093(5)$	344(4)	608(5)
$\mathrm{Me}(4)$	219(9)	$-1487(3)$	$808(10)$
$\mathrm{C}(4)$	- 142 (6)	-843(3)	789(6)
C(5)	-924(6)	-726(4)	421(6)
C(6)	-1342(5)	-165(4)	$352(5)$
$\mathrm{Me}(6)$	-2 196(7)	-122(7)	$-72(7)$
$\mathrm{X}(1)$	4 393(34)	1349 (23)	392(26)
$\mathrm{X}(2)$	$4550(33)$	$1783(23)$	$695(25)$
$\mathrm{X}(3)$	5000 (33)	1761 (22)	$1324(26)$
$\mathrm{X}(4)$	$5815(32)$	$1392(23)$	$1337(25)$
$\mathrm{X}(5)$	5 973(30)	999(21)	892(23)
$\mathrm{X}(6)$	$5114(38)$	848(27)	328(30)

listed as Supplementary Publication No. SUP 22338 (44 pp.).*

RESULTS AND DISCUSSION

The unit cell of the compound contains pairs of centrosymmetrically related enantiomers; the essential features of the molecule are shown in Figure 1 and may be summarised as follows.
Three Pd atoms are arranged in a triangular fashion and a crystallographic two-fold symmetry axis passes through the central metal atom, $\operatorname{Pd}(2)$. This relates the primed and unprimed atoms in the molecule and the discussion will, therefore, mostly be concerned with one half of the molecule since only one half is unique.

The terminal palladium, $\operatorname{Pd}(1)$, is $\mathrm{O}, \mathrm{O}^{\prime}$-bonded to the pentanedionato (acac) ligand and the C_{3} ligand bridges $\operatorname{Pd}(1)-\operatorname{Pd}(2)$. The angle $\operatorname{Pd}(1)-\operatorname{Pd}(2)-\operatorname{Pd}\left(1^{\prime}\right)$ is 127.2°, $\operatorname{Pd}(1)-\operatorname{Pd}(2)[2.662(2) ~ \AA]$ is well within the range

[^0]$(2.531-2.699 \AA)^{4}$ reported for $\mathrm{Pd}-\mathrm{Pd}$ metal-metal bonds but there is no significant bonding between $\operatorname{Pd}(1)$ and $\operatorname{Pd}\left(1^{\prime}\right)[4.769(2) \AA]$.

Table 2
Selected bond lengths (\AA) and angles (${ }^{\circ}$) of complex (2) (e.s.d.s in parentheses)

The cyclopropenium unit from which (2) is derived has undergone ring-opening on complexing to the metal and while $\mathrm{C}(1)-\mathrm{C}(2) \quad[1.370(17) \AA]$ and $\mathrm{C}(2)-\mathrm{C}(3)$ $[1.443(19) \AA]$ are in the range expected for co-ordinated olefinic double bonds, ${ }^{5}$ there can be little bonding between $\mathrm{C}(1)$ and $\mathrm{C}(3)[2.116(17) \AA]^{6} \quad$ The angle $\mathrm{C}(1)-\mathrm{C}(2)-$ $\mathrm{C}(3)$ has opened correspondingly from 60° for $\mathrm{C}_{3} \mathrm{R}_{3}{ }^{+}$to $97.5(9)^{\circ}$ in the complex.

As described in the Experimental section above, an examination of the X-ray data shows that in the crystal which was studied there is some disorder of the two methoxy-groups between the p-positions of the phenyls (A), (B), and (C) attached to C(1), C(2), and C(3) of the C_{3}
${ }^{4}$ G. Allegra, C. T. Casagrande, A. Immirzi, L. Porri, and G. Vitulli, J. Amer. Chem. Soc., 1970, 92, 289; Y. Kobayashi, Y. Iitaka, and H. Yamazaki, Acta Cryst. (B), 1972, 28, 899; E. Ban, P. T. Cheng, J. Jack, S. C. Nyburg, and J. Powell, J.C.S. Chem. Comm., 1973, 368 ; H. Werner, D. Tune, G. Parker, C. Krüger, and D. J. Brauer, Angew. Chem. Internat. Edn., 1975, 14, 185; A. Ducruix, H. Felkin, C. Pascard, and G. K. Turner, J.C.S. Chem. Comm., 1975, 615; S. Z. Goldberg and R. Eisenberg, Inorg. Chem., 1976, 15, 535; B. R. Penfold and R. Colton, J.C.S. Chem. Comm., 1976, 485; A. L. Balch, J. R. Boehm, H. Hope, and M. M. Olmstead, J. Amer. Chem. Soc., 1976, 98, 7431.
ligand. From the data it is clear that the major isomer present (67%) contains the arrangement (a) with p methoxyphenyls on the terminal carbons $\mathrm{C}(1)$ and $\mathrm{C}(3)$ and phenyl on the central carbon $\mathrm{C}(2)$. The population analysis suggests the presence of other isomers containing the arrangements (b) and (c) to the extent of approximately 30 and 3% respectively. The existence of other isomers has also been inferred from the ${ }^{1} \mathrm{H}$ n.m.r. spectra of compound (2) and its platinum analogue. ${ }^{1}$

(a)

(b)

(c)

$$
\left(R^{1}=P h ; R^{2}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)
$$

The carbon atoms bonding the aryl groups to the C_{3} ligand are very nearly in the same plane $[C(A 1)-0.277$.

Figure 1 View of the molecule (2) projected in the plane $\operatorname{Pd}(1)-\operatorname{Pd}(2)-\operatorname{Pd}\left(1^{\prime}\right)$. Phenyl and p-methoxyphenyl substituents are omitted for clarity; for more detail see diagram for Table 2
$\mathrm{C}(\mathrm{Bl})+0.097$, and $\mathrm{C}(\mathrm{Cl})+0.012 \AA$] as the C_{3} ligand and the three aryl groups are feathered with respect to each other [angles of aryl planes to $\mathrm{C}(\mathbf{1})-\mathrm{C}(2)-\mathrm{C}(\mathbf{3})$ plane, (A) 27°, (B) 50°, and (C) $\left.37^{\circ}\right]$. All the four external angles, $\mathrm{C}(\mathrm{Al})-\mathrm{C}(1)-\mathrm{C}(2), \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(\mathrm{Bl}), \mathrm{C}(3)-\mathrm{C}(2)-$ $\mathrm{C}(\mathrm{BI})$, and $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)$ are close to 131°.
The C_{3} ligand is asymmetrically placed with respect to $\mathrm{Pd}(1)$ and $\mathrm{Pd}(2)$; $\mathrm{C}(1)$ and $\mathrm{C}(3)$ are nearer to $\mathrm{Pd}(1)$ $[2.037(11), 1.981(13) \AA]$ than to $\operatorname{Pd}(2)[2.164(11), 2.106(13)$ $\AA]$ but $C(2)$ is closer to $\operatorname{Pd}(2)[2.321(14) \AA]$ than to $\operatorname{Pd}(1)$ [2.579(14) \AA].

[^1]The pentanedionato-ligand is attached to $\mathrm{Pd}(1)$ in a conventional manner; all bond lengths are normal, and
supported by the planarity of the (acac) $\mathrm{Pd}(1) \mathrm{C}(1) \mathrm{C}(3)$ unit, and the short $\operatorname{Pd}(1)-\mathrm{C}(1)$ and $\operatorname{Pd}(1)-\mathrm{C}(3)$ bonds, the

Table 3
Equations of, and angles between, planes in complex (2) ${ }^{a}$

Set

$$
\begin{aligned}
& \mathrm{Pd}(1)-\mathrm{O}(1)-\mathrm{O}(2): \\
& \mathrm{Pd}(1)-\mathrm{C}(1)-\mathrm{C}(3): \\
& \mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(2): \\
& \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3): \\
& \mathrm{Pd}(2)-\mathrm{C}(1)-\mathrm{C}(3): \\
& \mathrm{Pd}(2)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right): \\
& \mathrm{Pd}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right): \\
& \mathrm{Pd}(1)-\mathrm{C}(2)-\mathrm{C}(5): \\
& \mathrm{Pd}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right) \\
& \mathrm{Pd}(1)-\mathrm{Pd}(2)-\mathrm{Pd}\left(1^{\prime}\right) \\
& \text { Plane of ring A: } \\
& \text { Plane of ring B: } \\
& \text { Plane of ring } \mathrm{C}:
\end{aligned}
$$

$$
\begin{aligned}
&-0.5452 X-0.2032 Y+0.8133 Z= \\
&+0.5685 X+0.1255 Y-0.8131 Z=-1.7631 \\
&-0.5347 X-0.1841 Y+0.8247 Z= \\
&+0.3067 X-0.1978 Y-0.9310 Z=-3.1065 \\
&+0.5569 X+0.7476 Y+0.3620 Z=+3.3439 \\
&-0.5569 X+0.7476 Y-0.3620 Z=-0.0470 \\
&-0.5452 X+0.2032 Y+0.8133 Z= \\
& 0.6021 X-0.6283 Y+0.4927 Z=0.5539 \\
&-0.8225 X-0.5676 Y+0.0378 Z=-0.2017 \\
&-0.9993 X-0.0000 Y-0.0388 Z=-0.1441 \\
&-0.4785 X-0.2336 Y+0.8465 Z= \\
&-0.6891 X+0.6446 Y+0.3312 Z= \\
& 0.0805 X+0.6608 Y+0.7463 Z= \\
& 0.9868 \\
& 0
\end{aligned}
$$

Ang	betwe	planes:										
Set	1	2	3	4	5	6	7	8	9	10	11	12
2	175.4											
3	1.4	176.1										
4	152.2	25.0	153.6									
5	99.3	83.3	97.9	108.3								
6	98.2	85.9	98.0	89.0	83.2							
7	23.4	161.0	22.3	164.7	81.8	80.7						
8	78.5	97.9	78.5	98.6	87.5	169.5	93.2					
9	53.5	124.7	54.9	100.1	150.3	88.9	68.7	96.9				
10	59.1	122.4	59.8	105.7	124.8	55.2	59.1	128.4	34.9			
11	4.6	171.7	4.5	152.7	97.7	102.4	25.6	74.0	56.1	63.6		
12	59.1	125.5	58.5	130.3	77.4	41.8	39.1	131.0	77.7	47.5	62.6	
13	64.6	118.6	63.2	143.2	36.0	79.7	45.8	89.9	114.4	96.3	64.0	51.9

the atoms are virtually co-planar since the dihedral angle between the plane including $\mathrm{O}(1)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(5)-$ $\mathrm{C}(4)$ and that through $\mathrm{Pd}(1)-\mathrm{O}(1)-\mathrm{O}(2)$ is only 1.4°. Furthermore, the plane defined by $\mathrm{Pd}(1)-\mathrm{O}(1)-\mathrm{O}(2)$ is virtually coplanar with $\mathrm{Pd}(1)-\mathrm{C}(1)-\mathrm{C}(3)$ (dihedral angle 4.6°) ; $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ makes an angle of 155° with $\mathrm{Pd}(1)^{-}$ $\mathrm{C}(1)-\mathrm{C}(3)$.

In considering the bonding of the C_{3} ligands to the Pd_{3} framework it is instructive to look at it from two different viewpoints. The first is to consider each C_{3} ligand as a $\mu-\eta^{3}$-allylic unit which bridges the $\operatorname{Pd}(1)-$ $\operatorname{Pd}(2)$ metal-metal bond and contributes 5 electrons to the cluster. In this sense the structure resembles those of two nickel complexes (6) ${ }^{7}$ and (7) ${ }^{8}$ (very brief accounts of which have quite recently been published) except that there the C_{3} ligands bridge $\mathrm{Ni}-\mathrm{Ni}$ bonds very nearly perpendicularly. In complex (2) the C_{3} plane lies at an angle of 71° to the $\mathrm{Pd}(1)-\operatorname{Pd}(2)$ axis. This difference probably arises because of the greater asymmetry of our palladium complex but it also encourages an alternative view of complex (2).

The alternative approach is to regard $\operatorname{Pd}(1)$ as di- $\sigma-$ ($1,3-\eta_{-}$) bonded to the C_{3} unit, which in turn is $\pi-\left(1-3-\eta_{-}\right)$ bonded to $\operatorname{Pd}(2)$. The bonding of the C_{3} unit to $\operatorname{Pd}(1)$ is then very similar to that found in the iridium complex $\left[\operatorname{Ir}\left(1,3-\eta-\mathrm{C}_{3} \mathrm{Ph}_{3}\right)\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right]^{+} \quad(5) .{ }^{9} \quad$ This view is

[^2]lengths of which are characteristic of $\mathrm{Pd}-\mathrm{C}\left(s p^{2}\right) \sigma$ bonds. ${ }^{10}$ Similarly, the $\operatorname{Pd}(2)-\mathrm{C}(1)$ and $\mathrm{Pd}(2)-\mathrm{C}(3)$ bonds

Figure 2 View of the molecule (2) along the edge of the $\mathrm{Pd}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$ plane; phenyl and p-methoxyphenyl substituents and remaining parts of the acac ligands are omitted for clarity
are longer and are characteristic of those between Pd and η_{i}^{3}-allylically bonded carbons, ${ }^{10}$ but $\operatorname{Pd}(2)-\mathrm{C}(2)$ is sig-

[^3]nificantly longer ($0.19 \AA, 13 \sigma$) and suggests a rather weaker bonding of the metal to $\mathrm{C}(2)$ than is usual in normal mononuclear η^{3}-allylic complexes.
$\operatorname{Pd}(2)$ may then be regarded as octahedrally coordinated, the co-ordination sphere being made up of two π-allylically bonded units $[\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ and $\left.\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)\right]$, each occupying two co-ordination sites, the remaining two being taken up with bonds to $\operatorname{Pd}(1)$ and $\operatorname{Pd}\left(1^{\prime}\right)$ respectively. Figure 2 illustrates this view and also shows the relative orientations of the two n^{3}-allylic units, while Figure 3 illustrates the relative positions of $\operatorname{Pd}(\mathbf{1})$ and $\operatorname{Pd}(2)$ to the allyl plane.

Figure 3 View of the allylic plane [C(1)-C(2)-C(3)] with respect to $\operatorname{Pd}(1)$ (out-of-plane distance $-0.80 \AA$) and $\operatorname{Pd}(2)$ (out-ofplane distance $+1.71 \AA$); substituents on the C_{3} ligand and acac atoms omitted for clarity

Such a view of the molecule suggests that $\operatorname{Pd}(1)$ and $\operatorname{Pd}\left(1^{\prime}\right)$ are then best regarded as 15 -electron atoms. Since n.m.r. studies show (2) (and the related molecules discussed in ref. I which have the same structure) to be diamagnetic, both $\operatorname{Pd}(1)$ and $\operatorname{Pd}\left(\mathbf{1}^{\prime}\right)$ must pair their odd electrons with $\operatorname{Pd}(2)$ which then becomes an 18 -electron atom. This accounts for the presence of the metalmetal bonds in the complex.

The bend (of 127°) of the $\mathrm{Pd}-\mathrm{Pd}-\mathrm{Pd}$ framework, which is at first sight surprising, now comes as a logical consequence of (i) the steric requirements of the six-coordinate $\operatorname{Pd}(2)$, and (ii) the need for the two \{(acac)$\operatorname{Pd}(\mathbf{1}) \mathrm{C}(\mathbf{1}) \mathrm{C}(2) \mathrm{C}(3)\}$ units to minimise their interactions especially when the three aryl groups attached to the C_{3} ligands are considered. As Figure 2 infers, the aryl groups on the C_{3} ligands are interleaved with each other and the units can be thought of as two gear wheels each bearing three cogs (aryl groups) which mesh together. The racemisation of compound (2) and related complexes, ${ }^{1}$ which is observed by n.m.r. spectroscopy, then occurs by a one-cog movement of the two gear wheels with respect to each other.

Normal η^{3}-allylic complexes are found to have the allylic unit at an angle of $110-120^{\circ}$ to the co-ordination plane of the metal rather than perpendicular to it. Kettle and Mason suggested that this was because two forms of bonding were possible, the $\pi-\left(\eta^{3}\right)$ and the di- σ -

11 R. Mason and S. F. A. Kettle, J. Organometallic Chem., 1966, 5, 573.
${ }^{12}$ M. D. Rausch, R. M. Tuggle and D. L. Weaver, J. Amer. Chem. Soc., 1970, 92, 4981; R. M. Tuggle and D. L. Weaver, Inorg. Chem., 1971, 10, 1504, 2599.
$\left(1,3-\eta^{2}-\right)$, and that the structure actually adopted was a compromise between these two forms which minimised the overall energy of the molecule. ${ }^{11}$ Clearly a very similar description of the bonding would be entirely appropriate for compound (2).

It is also instructive to compare the various types of bonding of $\mathrm{C}_{3} \mathrm{R}_{3}$ ligands to transition metals that have been reported since they show a unique set of trends. The complexes investigated range from the symmetrical (all C-C bonds equivalent) η^{3}-binding in (3) ${ }^{12}$ via the asymmetrically η^{3}-bonded in complex (4) ${ }^{13}$ [where although $\mathrm{Pt}^{-\mathrm{C}_{\mathrm{a}}}(2.48 \AA)$ is greater than $\mathrm{Pt}-\mathrm{C}_{\mathrm{b}}(2.09 \AA)$. and $\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{b}}(1.39 \AA)$ is less than $\mathrm{C}_{\mathrm{b}}-\mathrm{C}_{\mathrm{b}^{\prime}}(1.58 \AA)$ there is obviously still bonding between C_{b} and $\mathrm{C}_{\left.\mathrm{b}^{\top}\right]}$, to the ringopened $1,3-\eta$-bonded iridium complex (5) ${ }^{9}$ where there is no longer a bond between the two carbons σ-bonded to Ir.

Clearly complex (2) [and complexes (6) and (7)] represents a type of bonding in-between (4) and (5) and illustrates that the effect of increasing the electron density at a ligand by co-ordination of an electron-rich metal atom can be to cause $\mathrm{C}-\mathrm{C}$ bond cleavage.

(3)

(5)
(4)

(6)

(7) $R=P h$

In this context, however, a word of caution is needed. Although we have prepared $\left[\mathrm{Pt}_{3}\left\{\mathrm{C}_{3}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}\right\}_{2}-\right.$ $\left.\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}\right]^{2+}(8)^{1}$ which is formally two molecules of $(4$;

[^4]$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ in place of Ph on C) with one Pt joining them there was no indication that (8) could be induced to break up to give (4), for example even in the presence of a large excess of triphenylphosphine. Similarly, attempts to prepare (8) from reaction of (4) with Pt^{0} complexes were without success. Kinetic factors appear therefore
to allow the independent existence of two such similar entities as (4) and (8).
We thank the S.R.C. for support and the University of Sheffield for the award of a Junior Research Fellowship (to P. M. B.).
[8/157 Received, 30th January, 1978]

[^0]: ${ }^{3}$ ' International Tables for X-Ray Crystallography,' vol 4, Kynoch Press, Birmingham, 1974.

[^1]: ${ }^{5}$ S. D. Ittel and J. A. Ibers, Adv. Organometallic Chem., 1976, 14, 33.
 ${ }^{6}$ See, for example, discussion in A. Segnitz, E. Kelly, S. H. Taylor, and P. M. Maitlis, J. Organometallic Chem., 1977, 124, 113.

[^2]: ${ }^{7}$ R. G. Posey, G. P. Khare, and P. D. Frisch, J. Amer. Chem. Soc., 1977, 99, 4863.
 ${ }^{8} \mathrm{H}$. Hoberg and C. Krüger, Angew. Chem. Internat. Edn., 1977, 16, 183.
 ${ }^{\prime}$ R. M. Tuggle and D. L. Weaver, Inorg. Chem., 1972, 11, 2237.

[^3]: 10 See, for example, P. M. Maitlis, ' The Organic Chemistry of Palladium,' Academic Press, New York, 1971, vol. I, p. 38; T. Hosokawa, C. Calvo, H. B. Lee, and P. M. Maitlis, J. Amer. Chem. Soc., 1973, 95, 4914; B. E. Mann, P. M. Bailey, and P. M. Maitlis, J. Amer. Chem. Soc., 1975, 97, 1275; D. J. Mabbott, P. M. Bailey, and P. M. Maitlis, J.C.S. Chem. Comm., 1975, 521 ; E. A. Kelley, P. M. Bailey, and P. M. Maitlis, J.C.S. Chem. Comm., 1977, 289 ; P. M. Bailey, S. H. Taylor, and P. M. Maitlis, J. Amer. Chem. Soc., 1978, 100, 4711.

[^4]: ${ }^{13}$ M. D. McClure and D. L. Weaver, J. Organometallic Chem., 1973, 54, C59.

